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Most software errors are relatively
harmless, albeit annoying, such as

when a word processor crashes. However,
errors in some types of software can have
serious consequences such as the failure
of an aircraft’s flight control software,
which could be catastrophic. Software
that controls a system whose failure could
endanger human life or the aircraft is
termed safety-critical software. Its integrity is
of great concern to developers, users, the
public, and the certification/regulatory
authority.

Recent large-scale assessments of
avionics software have produced some
interesting results that show how impor-
tant language selection is when producing
safe and reliable avionics. This article
presents the following information:
• Covers some of the methods used to

identify safety-critical software and
functionality.

• Discusses some myths of static code
analysis.

• Describes some static analysis tech-
niques.

• Identifies some of the tools available.
• Provides some general results of the

practical application of static code
analysis.

Static Code Analysis
Safety-critical software must be shown
fully predictable in operation and have
the properties required of it [1]. In addi-
tion to dynamic testing, such code is also
subject to static testing: This is the rigor-
ous examination of software (without
running it dynamically) to establish the
properties that will always hold true
under any operating condition. It is an
examination of the code, the architectur-
al design, and the accompanying docu-
mentation, which together provides a pic-
ture of the completeness, or otherwise, of
the software system [2].

There are various techniques that
come under the umbrella term static code
analysis, and these can be characterized by

their nature and depth [3]. Nature refers
to the broad objectives of the analysis
and could be concerned with specific
properties such as portability. Depth
means the analytical depth of the tech-
nique.

Identification of
Safety-Critical Software
The United Kingdom (UK) Ministry of
Defense (MoD) adopted the safety argu-
ment approach in 1992, as retrospective
evaluation of avionics systems had
become complicated. The MoD still
operates the lessons learned/best practice
approach that is used as part of the safe-
ty argument evidence. The system design
standards are used to trap system safety
design requirements; these are Defense
Standard 00-970 [4] and Defense
Standard 00-971 [5] for aircraft. The
safety argument approach is now used
for the complete aircraft and has major
advantages; it does not limit the possible
design solution by being over-prescrip-
tive, and it can cope with rapidly chang-
ing technology.

The current preferred method for
safety-critical code functionality identifi-
cation (including system robustness) is to
use a top-down analysis starting with the
defined safety targets for tolerable cata-
strophic mishap rates, including aircraft
loss. Recent aircraft projects have shown
that bottom-up hazard identification pro-
duces somewhere between 700 and 1,500
hazards. The bottom-up approach does
not prioritize the hazards or show their
relationship to the system as a whole;
their true categorization is unknown.
These large numbers of hazards are diffi-
cult to manage, and so a top-down evalu-
ation is used to refine the argument.

The top-down approach normally
results in approximately 100 of the most
significant hazards being identified from
approximately 10 top-level accidents/
events. The Hazard and Operability
(HAZOP) [6] approach to system and
software functionality assessment has
demonstrated itself to be an invaluable

tool, particularly for defining system
robustness requirements. This approach
allows the system designer and regulatory
authorities to show, through reasoned
argument, that the following occur:
• Hazards are identified.
• Safety functionality is understood.
• Robustness requirements are identi-

fied.
• Hazards are mitigated to a tolerable

level.
The first and best step in hazard miti-

gation is to avoid using safety-critical
software wherever possible.

Why Use Static Code Analysis?
For UK defense projects, Defense
Standard 00-55 [7] is normally recom-
mended. This standard details two basic
approaches to safety critical software:
• The use of formal methods (correct

by design).
• The static analysis of the code (con-

formance with the design).
These are coupled with the following:
• Selection of a suitable high-level lan-

guage (including its subset definition
where appropriate).

• Defensive programming.
• Independence in verification and vali-

dation activities.
• Comprehensive documentation and

configuration management.
• Testing and test coverage.
• Compiler validation.
The formal methods approach has not
been widely adopted for the following rea-
sons:
• Some of the most recent aircraft

entering service started development
back in the late 1970s when formal
methods tool and support was severe-
ly limited. This is also prior to Defense
Standard 00-55 initial issue requiring
the use of formal methods.

• More recently, it is because of the
short lead times and hence the exten-
sive use of commercial off-the-shelf
components for which the Civil
Airworthiness Authorities do not man-
date the use of formal methods. The
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Civil Airworthiness Authorities sug-
gest that the use of formal methods be
considered [8].
The application of static code analysis

techniques in retrospect is not ideal; the
process is best suited and cheapest when
applied during software development.
Following the UK as low as reasonably practi-
cal approach [9] to risk, the retrospective
evaluation of safety-critical code is the
only reasonable method available at pres-
ent to reduce safety-critical anomalies to a
minimum – after all other mitigations have
been considered.

Static Analysis Myths
But We Test It
All software contains errors, and comput-
er programs rarely work the first time [10].
Usually, several rounds of rewriting, test-
ing, and modifying are required before a
working solution is produced [11]. Testing
usually involves running and evaluating
the software across its expected range of
operation. This process is limited by the
tester’s ability to predict this range of
operation, or rather, the range of inputs
that the program will receive. This is how
it is possible for large well tested software
packages to still fail periodically: The user
has done something not anticipated by the
tester. It would be nice to test every state
of a program, but such exhaustive testing
is impractical as it would take far too much
time and expense.

An argument often used against static
analysis is that “our software has been
extensively tested.” This argument does
not stand up. Radio Technical Commis-
sion for Aeronautics, Inc. (RTCA)
Defense Order (DO)-178B [8] Level A
requires extensive modified condition/
decision coverage testing while RTCA
DO-178B Level B does not require this
level of testing. When Level A was com-
pared to Level B, no significant difference
in anomaly rates identified by static analy-
sis was found. Unhappily, the hack-it-and-
bash-it methodology is still prevalent
among many software developers.

Static Analysis Means It Is Safe
The phrase “static analysis means it’s safe”
is heard quite often. Static analysis only
allows us to argue that the code is as fol-
lows:
• As compliant with the software

requirements as present evaluation
methods and technology allows.

• That coding errors have been minimized.
Static analysis does not prove that the

requirements the code was developed
from were correct or show that the com-
piled code is correct.

It Costs Too Much
Based on project experience, an average
10 percent of a military aircraft’s software
– or approximately 500,000 software lines
of code – are found safety critical. The
average cost of retrospective independent
analysis for an aircraft is less than $13 mil-
lion, and on average less than 0.4 percent
of the total development cost for an air-
craft. These costs can be further reduced
if the semantic analysis element is direct-
ed. It has been shown that the most cost-
ly element of static analysis is the seman-
tic element when comparing costs of the
activity to total percentage of anomalies
found. One important area for future
research is the justifiable targeting of
techniques.

If, however, the software is designed
and analyzed as part of the development
process, then the cost savings are likely
when compared to normal industry costs.
There are also considerable through-life
cost savings and system reliability benefits.

Dissimilar Systems 
Although Defense Standard 00-55 [7]
allows the use of dissimilar systems to be
combined to create a safety-critical sys-
tem, this becomes a very difficult
approach to argue as being safe. The fol-
lowing issues need to be addressed:
• The comparison software or liveware

(pilots) becomes safety critical (70 per-
cent of aircraft accidents are due to
aircrew error).

• How do you prove dissimilarity?
• Reliability goes down, as the lower

integrity systems are likely to disagree
and fail more often.

• The warning system becomes more
critical.

• The cost of ownership goes up (sup-
porting multiple equipment, increase
aircraft weight, etc.).

• Designers tend to make the same mis-
takes.

Main Static Analysis Techniques
and Methods
Control Flow Analysis (Including
Cyclomatic Complexity)
Control flow analysis can be conducted
using tools or done manually at various
levels of abstraction (module, node, etc.)
and is done for the following reasons:
• Ensure the code is executed in the

right sequence.
• Ensure the code is well structured.
• Locate any syntactically unreachable

code.
• Highlight the parts of the code (e.g.,

loops) where termination needs to be
considered.

This may result in diagrammatic and
graphical representations of the code
being produced.

Data Flow Analysis
The objective of data flow analysis is to
show that no execution paths in the soft-
ware exist that would access a variable not
set to a value. Tools use the results of
control flow analysis in conjunction with
read/write access to variables. It can be a
complex activity, as global variables can
be accessed from anywhere. This analysis
can also detect other code anomalies such
as multiple writes without intervening
reads.

Information Flow Analysis
Information flow analysis identifies how
execution of a unit of code creates
dependencies between the inputs to and
outputs from that code. These dependen-
cies can then be verified against the
dependencies in the specification. This
analysis is often particularly appropriate
for a critical output that can be traced all
the way back to the inputs of the hard-
ware/software interface.

Information flow analysis may be aug-
mented in some tools by using annotations.
These are stylized comments that docu-
ment certain assumptions about func-
tions, variables, parameters, and types.
They enable an analysis to proceed more
efficiently because they give it more infor-
mation relevant to a particular block of
code.

Path Function Analysis (Also Called
Semantic Analysis or Symbolic Execution)
Path function analysis is used to verify
properties of a program by algebraic
manipulation of the source text, without
requiring a formal specification. It
involves checking the semantics of each
path through a program section or proce-
dure. Sophisticated tools give expressions
for the precise mathematical relationship
between inputs and outputs from a partic-
ular program section: They effectively give
the transfer function for that program sec-
tion [12]. They step through the code,
assigning expressions instead of values to
each variable. Thus the sequential logic is
converted into a set of parallel assign-
ments in which output values are
expressed in terms of input values – this
format is easier to interpret. The tools
produce an output for each path consist-
ing of the conditions that cause the path
to be executed, and the result of executing
that path.

Semantic analysis reveals exactly what
the code does in all circumstances for the
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whole range of input variables for each
program section. However, there is still
the need for substantial human involve-
ment in comparing the tool’s output with
the specification. Compliance analysis
(formal code verification) provides a
reduction in human requirements and
greater automation.

Formal Verification 
(Also Called Compliance Analysis)
This is the process of proving, in an auto-
mated process and as far as is possible,
that the program code is correct with
respect to the formal specification of its
requirements. All possible program execu-
tions are explored, which is not feasible by
dynamic testing alone. Depending on the
power of the tool being used, and its sim-
plification ability, the involvement of ana-
lysts may be large or small.

Verification conditions can enhance
compliance analysis. They consist of con-
ditions that should be valid at the start and
end of a block of code (pre- and post-
conditions) and are stated at the start of
that block. In a way, it is like a different
form in which the programmer can
explain the purpose of a block of code.
The analysis might start with the post-
condition and work backward to the start
of the block. If, on reaching the start, the
pre-condition is generated, then the block
of code is provably sound.

Compliance analysis effectively per-
forms a proof of the code against a low-
level mathematical specification. In this
respect, it is by far the most rigorous of
the static analysis techniques. However, its
value depends on the availability of a
specification expressed in a suitable form.
Furthermore, this rigor is at the expense
of cost; productivity is around five lines
of code per man-day.

Independent Evaluation
Since the 1970s, independent code inspec-
tions to reduce code error have been
found to be efficient and cost effective.
Experience from aircraft static code analy-
sis carried out to date shows that code
walkthrough finds about 60 percent of all
the anomalies found.

Other Techniques
Syntax Checks
Syntax checks aim to find language rules
violations such as using a variable of the
wrong type or before it is declared. The
compilers of some languages such as Ada
and Pascal will carry out syntax checks
automatically, whereas languages like C
and assembler need additional tools.

To allow the use of analysis tools,

reduce the number of likely coding viola-
tions and improve code readability. It is
normal to define a rule set when designing
safety-critical code to allow the tools to
carry out the analysis more readily and to
remove some of the more problematic
features. It has been found that the size of
the rule sets is dependent on the language,
such as the following:
• C has some 220 rules suggested [13].
• Ada 83 has approximately 80 rules.
• Southampton Program Analysis and

Development Environment (SPADE)
Ada Kernel (SPARK Ada) has an
extensively defined rule set; sometimes
a reduction in the rules can be agreed
on.

Range Checking
Range checking analysis aims to verify
that the data values remain within their
specified ranges, as well as maintain spec-
ified accuracy. This technique can detect
the following:

• Overflow and underflow analysis.
• Rounding errors.
• Array bounds.
• Stack usage analysis.

This is a form of shared resource
analysis that establishes the maximum
required size of the stack, and whether
there is sufficient physical memory to sup-
port it.

Timing Analysis
Timing analysis ascertains the temporal
properties of the input/output dependen-
cies, including the worst-case execution
time for the correct behavior of the over-
all system. It can be made difficult by lan-
guage features such as manipulation of
dynamic data structures, loops without
static upper bounds, and by using hard-
ware with built-in pipe and cache.

Other Memory Usage Analysis
This is required for any resource that is
shared between different partitions of
software. It reveals the absence of conflict
between the code and other low-level
components such as device drivers and
resource managers.

Object Code Analysis
Object code analysis demonstrates that
the object code is an accurate translation
of the source code and that the compiler
has introduced no errors. The analysis
may be carried out by manual inspection
of the machine code produced by the
compiler – this can be made easier if the
compiler vendor provides details of the
mappings from source code to object
code.

Limitations
Although the various forms of static code
analysis offer many advantages to the sys-
tem developer, they also impose some
constraints. Using these techniques
restricts language choices that may be used
and the choice of the structures used
within these languages. Furthermore,
these analytical methods require highly
skilled and experienced staff to carry out
the tests and analyze the results. It is not a
complete answer for the validation and
verification of safety-critical software
even with the use of automated tools.
Other forms of testing (for example
dynamic) are required to verify certain
aspects, like executing critical features.
Some of the restrictions of static analysis
using automated tools are the following:
• Multitask applications software must

be analyzed a task at a time. Another
form of testing is required to check
task interactions.

• Dynamic aspects of the software (for
example sequences of program execu-
tion) are difficult to model with static
analysis techniques.

• Most automated tools require transla-
tion to an intermediate language before
they can analyze the code. Automatic
translators are available for some lan-
guages, but for others one must either
translate manually or write a new trans-
lator. Some language features do not
have an equivalent in the intermediate
language even with the automatic
translators; they must be manually
translated. The static analysis of the
software depends on its translation
model and the more skilled the analyst,
the more skilled the model produced.
The validation of the intermediate lan-
guage model needs to be considered, as
this can be a major problem.

“All software contains
errors, and computer
programs rarely work
the first time. Usually,

several rounds of
rewriting, testing, and

modifying are required
before a working

solution is produced.”
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Air Vehicle Software Analysis
The practical application of static code
analysis has produced some interesting
results. The range of software systems
that have been subjected to analysis
include the following:
• Automatic flight control.
• Engine control.
• Fuel and center-of-gravity manage-

ment.
• Warning systems.
• Anti-icing systems.
• Flight management.
• Stores management.
• Air data units.
• Radio altimeters.
• Anti-skid brakes.

These systems vary in size from 3,000
lines of code to 300,000 lines of code
and include languages from assembler, C,
Pascal, Ada to Lucol, and SPARK Ada
[14].

Effects of Previous Development
Methodologies (RTCA DO-178B) [8]
It is worth reiterating that when compar-
ing RTCA DO-178B [8] Levels A and B
code, no discernible difference was found
by static code analysis demonstrating that
static code analysis is something you
carry out in addition to testing. Even the
most extensive testing does not remove
the anomalies found by static code analy-
sis. Surprising amounts of dead code have
been found in code developed to RTCA
DO-178B Levels A and B.

Effects of Language
The choice of language for a computer
program is important. Not only should
the functionality of the language itself be
considered, but also the availability and
quality of support tools and the expertise
within the development team. Unfor-
tunately, safety-critical software repre-
sents only a small subset of the global
programming effort; most languages are
not designed with high integrity require-

ments in mind. More commonly, com-
mercial factors such as productivity and
ease of use steer the development.

Some languages are better suited to
the production of safety-critical software
than others because they make it easier to
write dependable code, and easier to
demonstrate its freedom from errors.
However, you must bear in mind that the
language itself is a product that is sus-
ceptible to design flaws: Perfect code
could still produce errors when run.

The software lines of code per anom-
aly in Table 1 show some of the metrics
found from various programs. Table 1
shows that the poorest language for safe-
ty-critical applications is C with consis-
tently high anomaly rates. The best lan-
guage found is SPARK (Ada), which con-
sistently achieves one anomaly per 250
software lines of code. The average num-
ber of safety-critical anomalies found is a
small percentage of the overall anomalies
found with about 1 percent identified as
having safety implications. Automatically
generated code was found to have con-
siderably reduced syntactic and data flow
errors.

Software development is often per-
formed on a different system than that
used for the final application. Therefore,
the portability of the code is another fac-
tor to be considered when choosing a
language. That is, how easily it will run in
a different environment to the one in
which it was developed.

The quality of the available compilers
is also important. Modern programming
languages are very complex and sophisti-
cated and hence difficult to understand.
It is therefore challenging to write high
quality, dependable compilers for them
[15]. Widely used compilers and develop-
ment tools should be used whenever
possible, so that there has been plenty of
opportunity for errors to be found (and
hopefully rectified). This also applies to
the language used, reflecting why an

attractive (but little used) language such
as Modula-2 might not be chosen for a
safety-critical application.

Tools Available
There are a number of static code analy-
sis tools available. They offer different
depths of analysis, and some will only
operate on a few languages. Most of
them run on uncompiled source code
and first translate to an intermediate lan-
guage, which the analysis tool itself can
read.

The time taken for the tool to analyze
the code may be only a small fraction of
the time taken to carry out static analysis
of the code. Many tools produce reams
of data that must be laboriously analyzed
and processed; staff requires skill and a
lot of training.

Main Tools
There are three main, well-established
tools used on UK military programs.

Malvern Program Analysis Suite
Malvern Program Analysis Suite
(MALPAS) was developed by Royal
Signals and Radar Establishment
Malvern based on research they carried
out and by Southampton University in
the 1970s. It is now mature and since
1986 has been supplied and supported by
Advantage.

Although automatic translators exist
for most languages, the main ones cov-
ered are Ada and Pascal. There is no con-
cept of pointers in the MALPAS
Intermediate Language and so to analyze
C, for example, the code would first have
to be purged of the use of pointers – a
potentially formidable task.

SPARK
SPARK is a subset of Ada for high
integrity programming first formalized
by Bernard Carré and Trevor Jennings of
Southampton University in 1988. It has
continually evolved and nowadays it is
being more widely used and is gaining
general acceptance particularly as its
tools now run within a lunchtime for an
average-sized safety-critical avionics pro-
gram. In addition, SPARK now supports
tagged types, tasking (Ada95 Ravenscar),
and proof of exception freedom, which have
particular benefits in the context of
RTCA DO-178B [8].

Control flow analysis is not needed as
it is subsumed into the SPARK grammar,
and thus performed on the fly. Data and
information flow requirements have
been expressed as SPARK program
design rules.

Software
Language

Range Software
Lines of Code
Per Anomaly

Anomalies Per
Thousand Lines
of Code

Worst 2 500
Average 6 - 38 167 - 26

C

Best (Auto Code Generated) 80 12.5
Worst 6 167Pascal
Average/Best 20 50

PLM Average 50 20
Worst 20 50
Average 40 25

Ada

Best (Auto Code Generated) 210 4.8
Lucol Average 80 12.5
SPARK Average 250 4

Table 1: Software Language Anomaly Rates
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Liverpool Data Research Associates
Ltd.Testbed
Liverpool Data Research Associates Ltd.
(LDRA) Testbed was founded in 1975 and
is the oldest developer and retailer of static
analysis tools. Many languages are covered:
Ada, C, C++, Cobol, Coral 66, Fortran,
Pascal, PL/1, PL/Mx86, and Intel and
Motorola assemblers. The LDRA Testbed
will perform the three flow analyses, with
information flow analysis enhanced by the
use of annotations.

Other Tools
Other tools include the following:
• SPADE.
• QA C Programming Research Ltd.
• Cantata and AdaTEST IPL [16].
• Alsys C-SMART – Certifiable Small

Ada Run-Time [15].
• Aonix RAVENSCAR.
• PC-Lint [17].
• LCLint [18].
• PolySpace Technologies [19].
• Compaq Systems Research Center –

Extended Static Checking (ESC) [20].

Conclusion
The safety argument approach should be
used so that safety-critical software is mini-
mized, safety functionality is clearly identi-
fied, and analysis required is justified.

Static code analysis is an effective soft-
ware analysis technique; hence, its use is
recommended in the context of safety-crit-
ical software particularly when conducted
constructively as part of the software
development process.

If it is conducted retrospectively, it is
necessary to specify the nature and depth of
any analysis carried out. Static analysis tech-
niques should be targeted by the safety
arguments. Techniques for targeted, rather
than blanket analyses are being investigated
by a number of organizations. Once devel-
oped, they may reduce the cost of analysis,
while maintaining the required depth in the
areas of interest.

Experience with retrospective static
analysis shows that independent code walk-
throughs are the most effective technique
for software anomaly removal. These seem
to find up to 60 percent of the errors pres-
ent in the code.

The use of automatic code generation
should be encouraged because this seems to
result in low syntactic and data flow errors.

A safe subset of Ada must be consid-
ered when selecting a language for safety-
critical systems, as this will ensure anom-
alies are minimized. SPARK continues to
prove it is the most reliable approach to
safety-critical software. However, C and its
associated forms should be avoided.◆
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